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ELEMENTARY PARTICLE STRUCTURE 

CHAPTER I 

Roger E. Clapp 

Cambridge, Massachusetts 

December 16, 1953 

The purpose of this discussion and analysis is to 

explore one possible theoretical approach to the general 

problem of correlating the elementary particles.  This 

problem, so phrased, is of immediate Interest because of 

the increasing number"of known particles, but apart from 

the modern phrasing ("correlating the elemeuoary particles") 

this same philosophical problem has been with us for 

several thousand years. 

Man's search for the "elements," for knowledge of 

the ultimate structure of matter, has led him, stage by 

stage, to the concept of an elementary particle, the 

irreducible structural unit of matter=  Yet it has not 

been many years since the days when the nucleus was 

considered inviolate, and a few years earlier it was 

the atom that was thought to be indivisible.  Now today, 

as the list of elementary particles continues to lengthen, 

more and more physiciets share the suspicion that the 

elementary particles may not be truly ultimate and 

structureless after ail. 

/ 
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2. 

If man'a ideas about the structure of matter were 

collected and arranged in rough historical sequence, 

then the later part of the list might look like this: 

(v) Molecules 

(w) Atoms 

(x) Nuclei (and electrons) 

(y) Elementary particles:  n,p,e, V, y,/t,v,T?»tf 0,X,A, ... 

It can be seen that the historical order is also a rough 

order of decreasing size.  Furthermore, this historical 

sequence of ideas is, in addition, a structural sequence 

of conceptual levels, in the sense that the members of 

each level are constructed from building blocks found 

on the next lower level. 

If the elementary particles are not to be considered 

ultimate and structureless, that means that there exists 

at least one conceptual level still lower on the list. 

For example such a level might include as members a 

limited selection from the elementary particles, the 

rest of the elementary particles then being composite 

structures built from this limited number.  Such a 

[ 
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3. 

point of view would divide the elementary particles 

into two categories, one group being considered more 

fundamental than the other. Examples of this point of 

view are Louis de Broglie's proposal1 that the photon 

may be a combination of two nex.trinos, and the suggestion 

by Fermi and Yang2 that the pi-meson may be built from 

a nucleon and an anti-nucleon. According to a second 

point of view3, the next lower level might consist 

entirely of entitles not found (or not yet found) among 

the elementary particles.  There could also be a third 

point of view, in which the next lower conceptual level 

is supposed to contain new entitles in addition to 

certain selected elementary particles. 

However, as soon as the existence of a next lower 

level has been established, we will have to face the 

question whether there is a still lower level beneath, 

and so on. Will this sequence of conceptual levels ever 

terminate, or will it continue indefinitely?  Can we 

always expect to find further internal structure as 

we refine our theories or our measuring apparatus, 

or is there a last level, whose members have no inner 

structure? 
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A tentative answer* to this question can be phrased 

in the following way.  If any level in the sequent<s 

contains as many as two distinguishable members, then 

it is meaningful to ask about their inner structure, 

to ask whether there is a further level below  But if 

all of the elementary particles (along with any other 

phenomena susceptible to direct measurement) can be 

constructed from a single entity, then this entity is, 

almost by definition, the single member of the last 

conceptual level.  It is of course possible to imagine 

still lower levels, to imagine this single entity as 

being built from several ingredients; but as long as 

all physical phenomena can be expressed in terms of 

the single entity considered as a unit, the several 

ingredients will always appear in exactly the same 

proportions, in exactly the same combination.  Such 

an unvarying combination of the several Ingredients 

might Just as well be given a single name and treated 

as a unit, since no physical operation will be able to 

separate them. A last conceptual level, containing 

onlv a single member, will here be postulated.  The 

single member will be called the primitive field and 

will be denoted by the symbol J£: 
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(y)  Elementary particles:  n.p.e. ... 

(z) Primitive field: $ 

It is postulated, as the basis of this theory, 

that there exists a primitive wave field, £ , cut of 

which all the elementary par deles are to be built. 

The theoretical development will consist of the building 

of various structures from such a primitive wave field 

and the attempt to identify among these structures 

certain ones which have properties similar to the 

observed properties of known elementary particles. 

THE PRIMITIVE FIELD 

Most of the properties of a 3ingle primitive wave 

field can be Inferred from its singleness.  Because some 

of the elementary particles are known to be Fermi-Dlrac 

particles, It is essential that the primitive field have 

Ferml-Dlrac statistics.  A Fermi-Dlrac structure cannot 

possibly be built from any number of Bose-Elnstein 

building blocks, whereas both Fermi-Dlrac and Bose-Einsteln 

structures can be formed, respectively, from odd and even 

numbers of Fermi-Dlrac building units.  Similarly, since 

there are known to be elementary particles with a spin of 
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one-half, the primitive field cannot have Integral 

spin but must have half-integral spin; for simplicity 

a spin of one-half was tentatively selected for the 

primitive field.  Because the photon and neutrino 

are Included in the Hat of elementary particles to 

be constructed from the primitive field, it was inferred 

that the primitive waves should have a velocity 

essentially equal to c, and negligible mass. 

Any coupling between primitive waves must be of a 

very restricted kind.  The usual general forms of coupling 

would imply coupling fields, with their own quanta, and 

these quanta would be distinguishable from § yet equally 

fundamental.  That is, there would then be two or more 

members of the lowest conceptual level, and this was 

ruled out at the start.  It will be assumed tentatively 

that the only coupling between primitive waves is via 

the exclualon principle.  (But see also Appendix D.) 

A wave equation for a primitive wave, embodying the 

properties listed above, can be written down directly. 

The insertion of zero mass Into the Dirac equation gives 

the equation of a wave with velocity c and spin one-half. 

The question of atatlatica and coupling will not arise 

until two or more wave3 are combined, as in the next 

section. 
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In order to simplify future- calculations, Dirac's 

representation of the matrix operators in his equation 

is modified by introduction of the diagonal matrix tr to 

replace Dirac's matrix px   .  As a result, the four- 

component wave function can be sepe.ro.ted into a pair 

of two-component spinors which are not coupled by the 

wave equation.  All calculations can then be carried 

out in terms of the two-component spinors, and this 

is a great advantage when two or more waves are 

combined into a single structure.  For a single primitive 

wave, the explicit wave equation will be written in the 

following form: 

c at + r cr.y (*>Y,z,t)**0 (I) 

Equation (l) Involves four matrix operators:  T, 

<JZ  » (H. » <J~Z   •  These operators can be written out 

in full four-by-four notation, with dots representing 

zeros: 

\    i 

r = 
1 ' • . 

• 

1 
• 

1 

« 

* • 

1 

• 
-/ 

(2 
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<rx     = 

* 1 • • 

• 
1 • * • 

* • • ! 

• • 1 • 

(21) 

°7 (2 0 

o: = 

1 • 

1 

• • 

• 

-I 
• \ 

• 

• • • 
-' 

(2J) 

With the above notation, the wave function $F(x,y,z,t) 

"becomes a column matrix of four components.  However, 

the matrices (2) have no elements coupling the upper two 

components with the lower two components.  The upper and 

lower pairs of components may therefore be treated 

separately, in Equation (l), with T taking on the 



respective values +1 and -1, while the components 

of <T have been reduced to their two-by-two forms: 

i 

£0 

In practice It will be found convenient to separate 

the X-  and <T-dependence of the wave function; this 

procedure will become clearer in later sections. 

( ) PLANE WAVE SOLUTION 

Under certain conditions, Equation (l) can be 

satisfied by a plane wave solution of the form: 

%(r,-b;K,K) = 
(K- r-K ci) 

M 

where a,b,e,d are constants independent of x,y,z,t. 
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Substitution of (4) and (2) into (1) leads to the 

following set of equations, linear and homogeneous 

in the unknown parameters a,b,c,d. 

(K.-K%) a - (KK-XKY) b   =  0 

(K0+Kz)c   + (Kx-^Ky)J.    = O 

(Kx+iKy)C   + (K0-^)^ - 0 

Either the first or the second equation in (5) 

can be solved for the ratio a/b, but these two equations 

will give consistent results only if the following 

secular relationship is satisfied: 

(5) 

Kx *f" Ky "i K% K: 
(6) 

This same relationship is also required, in order that 

the third and fourth equations of (5) give a consistent 

value for the ratio c/d. :.n  each case, however, only 

the ratio is determined.  To fix the individual 

parameters, except for an adjustable phase factor, the 

following normalization requirement will be imposed: 
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i.r+itr+w+ur - I«.I (7) 

( ) 

It has already been noted that the representation 

chosen for the operators is such that the first pair of 

components is quite independent of the second palr= 

There are two independent solutions of Equations (5). 

each satisfying tooth (6) and (7), and these two solutions 

are given "below in (8) and (9): 

a   = 

x - 

(K„ + Kg) (K,~iKr) 

2 Otf + K/)* 

fc.-K,)fo.+XKy) 

c' -   / - 0 

^ 

^ 

> w 

; 

.// - *' =0 

// c"  = + 

/ = - 

fr. -KK)(KX-A Ky) 

i (*/ + *;/* 

2   (itf + K;) ^ 

-iJi 

A 

(fl 

; 
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These two independent solutions may conveniently 

be written in a factored notation, which can be defined 

as follows: 

n 

-   ••" 

a 
i |T r-—r^       r |T  \<r       1 

b 
c s 1 

0 

a 
+ 0 

1 
c 
4 

d 

r !<r r i  • i <r       ' 

a 1 + h 0 
c 0 i i 

/ 

(»o; 

In the above factored notation, the (T-operators take 

the form given in Equations (3), and operate upon the 

two-component splnors labeled with the superpcript (T, 

while the spinors labeled T are acted on by the 

operator T, which is here represented by a two-by-two 

matrix: 

r = (i 
( i 
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In the factored notation, the two independent plane wave 

solutions ars; 

5 = 

1 a' 

0 y 

0 
T 

c' 

1 r 

e (iz*) 

„i(X-Tf-K.C-t)+A.'t>* 
(iZh) 

in which the constants a'»b',c",d" have the values 

given in (8) and (9)» while the phasea (f>    and <f)   are 

real numbers but are otherwise arbitrary. 

/ i 
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DOUBLE-WAVE EQUATION 

Except for changes in normalization and matrix 

representation, the equations for the primitive field 

have so far been taken from the formalism of the Dirac 

theory, the wave equation (l) containing a differential 

operator acting on a wave function. The Schro'dinger 

equation has a similar general form, and can indeed be 

derived from the Dirac equation.  In generalizing the 

present theory to cover the description of systems of 

two or more primitive waves, the formal procedure will 

be borrowed from the Schrflding&r theory. That is, wave 

functions for individual waves will be multiplied to- 

gether to give a wave function for the composite system, 

and the corresponding differential operators will be 

added together. When applied to the Dirac theory, this 

is often called the "many-time formalism", but in the 

present theory the simplicity of the coupling between 

waves makes it convenient to write most of the equations 

in terms of a single "laboratory time". It should be 

noted at this point that the choice of a particular 

scheme for describing wave systems is a tentative one. 

o 
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Plane wave solutions of the single-wave equation (l) 

have already been described and are given in (4) and (12). 

A more general solution to Equation (1) can be formed 

from a linear combination of plane wave solutions.  Two 

such linear combinations might be written in this way: 

9A 

'0 

-  /A (ZX , O-1 (n, f, 5 Z , *o* ) • A<XA J«r* ^a (l3 a) 

~ fo(*k > fa)' £(%,** i >4 J fa) • i*.* Jfa ^      (i 3 y) 

1 

The labels 1 and 2 serve to identify the two solutions. 

(\ A general wave function describing the combined system 

built from e* and I?, and antisymmetric?d to show the 

Fermi-Dlrac nature of the primitive field, will be: 

$(U)- f/A fc, fa)-3(ilk, fa) • 

I (n, *>; 4 *.*)•1 (£, tA j Z, fa) 

• JKxa ^A J<*A ^**i> J*rk <t*xi, (inj 
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It Is Important to distinguish between the adding 

of solutions to produce a new single-wave solution, as 

in (13a)» and the multiplication of solutions to produce 

a multiple-wave system, as in (14). While this distinction 

does follow current practice in quantum mechanics and 

field theory, it should be considered tentative here, 

until it can be proved from the initial postulate or 

Justified by the results of the theory. 

The double-wave function $(1,2) will separately 

satisfy both of the following single-wave equations: 

•k^+ttl 

$M   -    O (liTa) 

$ (I,Z)   - o (\Sk) 

It is at this point that the separate times, ti and t«, 

can be replaced by a center-of-gravity or laboratory 

time, T, and a relative time, tr .  The separate apace 

coordinates, r*.  and r«, can at the same time be replaced 

by center-of-gravity aiid relative coordinates, R and r. 
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The new variables are related to the old by 

equations which Include the following: 

ir * -fc,-t 

9T  ^t, "^ -a^a 
_2_ 
2fr 

V^iVn+V,,        7, 
2 (at, 

2 ^ 

) 

(I by 

From Equations (15a) and (15b), by addition and subtraction, 

the following equations may be derived: 

[ i& + i-fr*+T»^M 
+ /r15f-t;?).^l$(i,*)   =^    f/7) 

[j-JL 
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Equation (17) has the same general form as the 

conventional wave equation for a field of a certain 

mass (M) and any spin: 

In (19) the repeated index u.  indicates a summation 

over the four space-time coordinates of relativity 

theory.  The pL are operators whose commutation rules 

depend on the spin of the field $ . Mis tlje mass of 

the field.  A comparison of terms in (19) with terms 

in (1?) shows that the double-wave system ip(l,2) 

satisfies the same law of motion as the field c5, except 

that the mass of the field a) is replaced by an operator 

which acts on variables in ip(l,2) which are concerned 

with the inner structure of the double-wave system. 

That Is- the double-wave system as a whole may be treated 

as a field or particle, with the internal structure or 

relative motion, as selected by the operator (X{<% — Ta c£ ) • \/r  9 

accounting for the effects which we know by the name 

of mass.  This is a tentative mathematical suggestion 

based on the similarity between (19) and (17), but its 

physical interpretation has the attraction of great 

V 
I 

—\ 



simplicity. It is known that an increase in the kinetic 

energy of internal motion (as, for example, the spinning 

of a gyroscope) will be reflected in a finite increase 

in the mass of the system. Thu3 the mass of a structure 

will contain contributions due to known internal motion; 

it would be gratifying if all mass could be shown to 

arise in the same wayr from some form of internal motion. 

SPIN Z£*0 SOLUTION 

The wave function ip(l,2) will be separated into 

two factors, representing the center-of-gravity motion 

and the internal structure: 

$(,,z) = ex**-xKcT-K?) (z°) 
In (20) the relative time, tr, was omitted from explicit 

consideration, since it will not be involved in the 

solution of the wave equation (17).  Strictly, (20) 

can be considered as a part of a more general solution, 

or as a special case in which the relative time, tr, has 

been set equal to zero. 
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Substitution of  (20)  into   (17)  gives: 

K "K*)- [i(r,5f+r48j).f? 

+ (T,of-r^)-i-vJ W        (ai) 
Since both Ti and Ts are diagonal, and each commutes 

with everything in (21), they may each be given the 

numerical values of ±1 .  For the first solution to 

be examined, both TA and T8 will be set equal to +1. 

K W)- [*#+«)•»?+ #-*)• iVr] U?)    (zz) 
A further simplification can come from the selection 

of a solution for which the center of gravity is at rest, 

so that K is equal to zero: 

Equation (23) is now an eigenfunction-elgenvalue 

problem that can be solved directly. 

I 
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r) 

The form of Equation (2J>) is such that a 

solution »^(r) can be restricted to have a definite 

value of total Internal angular momentum.  The value 

zero will be chosen, although other Integral values 

could also be studied. 

It will be necessary to have a definite spin notation, 

to show the various C-components and ^-components which 

are Included in <f»(r).  Each of the two waves which 

make up the double-wave structure can have two choices 

for its 0"-3pin, and two choices for its T-spin, although 

in the present case, with Equation (23), the T-components 

have already been selected and fixed.  For representing 

either kind of spin, the following basic frame will be 

used: 

x+0) • X+(A) 

X+0) • 
X~0) 

X~(*) 
X+(&) 

X~0) • X-(a) 

(u) 
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For example, a state in which both *^"i and  ts have the 

same value of +1 can be Indicated by the notation: 

U r  = 
= *+fr)%+fc) (25) 

A singlet combination of the two   <r-splns  can be written: 

( ) 

w. • ±. 
2* 

I 
-I 

-x~to)-x*fc)] 
(is) 

The brief notation on the left of (26) will serve 

as a form of abbreviation which can be generalized to 

other functions of the spinor components.  In addition 

to the x3o function given in (26), there is a 3P0 function 

which can be formed from the vector r and the available 

spin components.  ThlB 8P0 function is given in (27): 

* 
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3/-* H (27 

i i, 

The two <T-spin functions, (26) and (27), are the 

only ones which satisfy the requirement that the total 

Internal angular momentum vanish (J = 0), under the 
—»• 

condition that K be zero.  Later, when the motion of 

the center of gravity is considered, so that K differs 

from zero, two more C-spin functions will be introduced. 

But when the center of gravity is at rest, it is 

sufficient to v/rite </*(F) as the sum of two terms: 

a fa.    + b-fo 

W • '(1). • I (r) 

H • M • i (r) (21k) 

It should be uoted that both spin functions (26) and (27) 

are antisymmetric with respect to exchange of the labels 

1 and 2.  It is required that d»(r) be antisymmetric. 

Thus the scalar functions fa(
r) and ^b^1*^ should be 

symmetric, and will actually be found to be functions of ra. 
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The general solution (28) can now be substituted 

into the wave equation (23).  In the spinor notation 

of (24), the operator (07 — 5j)* Vr  "a8 +-^e form: 

tt-%)'Vr = 

• 
"V^x ~Avy}   (?*   'SyJ 

• 

cr 

» M -(hi) • 

(30) 

Equations (23), (26-30) can be used to obtain a pair of 

second-order differential equations for the unknown 

scalar functions fa(r) and fD(r): 

[# + *£ + "•] W - 
where an abbreviation has been used: 

«•=m 

0 

0 

(su) 
(3U) 

(3Z) 
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That solution of Equation (31a) which is finite at the 

origin, r = 0, is the spherical bessel function JO(K. r): 

f     v     sm (Kr) /   s 

Similarly, the solution of (31b) finite at the origin 

is also a spherical bessel function: 

These spherical bessel functions satisfy the general 

relations: 

^H   = - »CV faH (Kr) (3 +) 

*» fKr)   "ail [^" H + »"*** ^r)J    (35J 

For convenience the solutions of Equations (31a) 

and (31b) will be written in the following way: 

fafr)  " ^'M (36 a) 

fi» = *• K f, W (? $ y) 

i   > 

i 
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Then the solution of Equation (23) can be written: 

That is, the operator  /07 — gM.-j-^T,   has the 

(31) 

A- 

eigenvalues +2 K and -2JC , which belong to the eigen- 

functions ( i|/ + ^b) and ( i/>„ - ^b^' respectively. 

These eigenvalues are numerical values for the quantity 

Ko, which represents the energy or frequency of the 

double-wave structure, in wavenumber units. Since this 

is the rest system, 2K represents the mass or rest- 

frequency of the structure, again in wavenumber units. 

It remain* to be verified, in later sections, that this 

structure really moves like a particle-wlth-mass, when the 

center Of gravity is allowed to move through space. 

There is also a question as to the significance of 

the plus-or-minus signs in (37). This question cannot be 

answered at this stage of the theoretical development, 

but it can be pointed out that there would have been a 

sign reversal if, in Equation (21), Tx and Ta had been 

put equal to -1 instead of +1. The appropriate T-function 

would then have been: 

! ( 1 
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< ) 

n 
7r)    = £*) 

1 

Instead of (28) and (29), the expansion of t//(r) 

would have been: 

v|/(r)  -   af,'   +   fa fj 

f. - v-    1 M   Til    tW 
W   !r).    fk(r) 

(to*) 

(tot) 

r> 

Equations (30-36) would have remained applicable, but 

instead of Equation (37) the solution would have been: 

with a reversal in the signs attached to the quantity 2K. 

Even though, for other reasons, this particular structure 

will be found to be an unsatisfactory model of an 

elementary particle, it is nevertheless permissible to 

anticipate that the existence of both positive and negative 

solutions for the rest frequency Ko may have some 

correlation with the existence in nature of certain 

elementary particles along with their associated antipartlcles. 
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( \ 

THE RELATIVE TIME 

Equation (20) can be generalized to allow for 

a dependence upon the relative time variable, tr • 

The new function ^(r,tr) can be related to ^(r): 

When (42) is substituted into the relative time 

equation (18), the result, analogous to (21), is: 

As before, Tl and T* will be set equal to +1: 

4 t&^HTil^, *«) ^s-; 

i 
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With the center of gravity at rest,  K = 0 : 

0) 

Equation (46) can now be solved, with the aid 

of (43) and the following easily verified relations: 

ifei"e    *fe aai   Yb are as 6lven in (29),  and the 

operator   ((Tj+fy-Vr    h&s the form: 

(vi*) 
6f7fc) 

<S7+£)-vr = 

2^ 6* -^ ^*-*Sp • 

a* 4) 
*       * 

«      • 

• 

  &+%)&*$ -^ 

^<r 

£*?> 
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It follows, from Equations (28), (29), (43), (46), 
=-> 

and (47), that, in this special case with K = 0, 

[i3-,#wl     =° OH) 
Furthermore, repeated differentiation of (46) with 

respect to the relative time,, fer , gives, for any value 

of n: 

As long as K = 0, 0(r.tr) can he taken as constant 

with respect to variations of the relative time, tr , 

so that ^f(r), as given in (28), (29), (36), (37), 

is a satisfactory solution of Equation (46). 

When K differs from zero, Equations (22) and (45) 

must be used instead of (23) and (46), and the question 

of the wave function's dependence upon the relative 

time, tr , will then have to be re-examined. In Appendix B 

such a re-examination is carried out. 
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\ 
• 

MOTION OP CENTER OP GRAVITY 

When the center of gravity is in motion, so 

that E / O, the more general wave equation (22) 

must be used instead of the simpler equation (23). 

The wave function ty(v)  will also be more complicated. 

Instead of the two terms (29), an infinite number of 

terms will be used in the expansion of <f*(r), but 

these will be arranged in increasing powers of Kf 

that is, in order of increasingly complex dependence 

upon the components of K.  If \j>&  and y^  in (29) are 

taken as the leading terms in this series, then the 

rest of the terms are generated from (1/ and ^ by 

the operators that appear on the right-hand side of 

the wave equation (22). 

It should be pointed out that such a procedure 

for generating the terms in the expansion of v(r*) 

assumes that the wavenumber X can play the part of 

a parameter independent of K, while KQ is allowed 

to vary with K.  Thus Equation (32), through which 

X was originally introduced, will hold only when 

K » 0, and will need to be replaced by a more general 

equation, to be found from the solution of (22). 
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32. 

It will be convenient, because of the complexity 

of the expansion, to divide the wave equation (22) by 

the parameter X, and to introduce the following 

abbreviati ons: 

ur 5 

I  * 

x (th) 

(Sri 1>) 

The wave equation can then be written: 

Ur f®- [iW+%>£ + ^-^>jt7r] ft?)  Cw) 

In addition to  the previous    <r-spln functions.. 

'fli,     and   ^f?J#   ,  in (26)  and (27),  there will be two 

new   CT-spin functions: 

W. si r«; 

L 
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3/r -^ =J- *r) 
I 

-1 (V z-k*y) -j- (hx -kx%)1 
kyX) 

kyX) 

[(kyZ -kzy)' f-i(km*- -A.Z)] 

(ST#a) 

The above function (54a) can also be written in the 

form: 

'&*% 4 
(k, -Aky)Z   ~ kx(x~. IY> 

i(fcy 
X(kxy 

-kyX) 

(k *A/er)%- - K(x+ *Y> 

L$*b) 

A number of identities, useful in the solution 

of equation (52) and the analogous relative-time 

equation, will be written down here: 

Vrjmt*'*    " 
-*>»' 

- »• ft). 

r») 
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-   O 
=   d> 

2 r* 'a). 

o 

(S9) 

fa) 

(CO) 

(a) 
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In the wave equation (52), the operator on the 

right hand aide will be denoted by the symbol H: 

This H is equivalent to the usual Hamiltonian divided 

by the product ^K..  The wave function «^(r*) will 

be expanded in a series: 

J^r)= a-^a +t-fA  + c-f. + J^ + ... £3) 

The coefficients a,b,c,..., will be determined later 

through the solution of a set of simultaneous equations, 

but first it will be necessary to identify the separate 

functions, the \L  , iL-.,    *L ,  and so forth, and to 

calculate the matrix elements of the operator H. 

As mentioned earlier, the procedure will be to 

start with the d/   and \L   already given in (29) and 

(36), and to operate upon these two,, and on each 

successive function when it has been identified, with 

the operator H given in (62).  In this way tha first 

fifteen functions of the Infinite set have been determined. 

The list, (64), omits the common factor ^T)* t   which 

should be understood in each case. 
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fa - 4*6") • Wo Ce** ~ t*J 
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+ %(K.?n'>r*-£ktr<]. '(1). 

The operator equations which these functions satisfy, 

and through which they wete generated, ere: 



38. 

C) 

i   vi 

_     2. /> 

H*fr 

3i*A '+• 4» 

HA 

HA KA   + *fc 
f A    +  A-fc 

**#c» 

/K* 

^£5a - G^stC) 
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Into the wave equation, which can he written as 

(ll - ur) f(fl = o tU) 

the expanded WC^)  in (63) can now be substituted. 

When the indicated operations have been carried out, 

as in (65), the resulting terms can be collected in 

the following way: 

+ [ h    ~   us. C  + £kx. Ji\ ^c 

•f [ C - us. 4. +  J^e J. ^ 

The functions v^a, \L , ... , as given in (64), are all 

linearly independent, are in fact orthogonal in a 

fashion which will be described later, so that (67) 

can be satisfied only if each of the bracketed 

expressions vanishes separately. What results is 



40. 

a set of simultaneous equations, linear and homo- 

geneous in the unknown coefficients a, b, c, ... , 

and such a system of equations has a solution only 

if the corresponding secular determinant vanishes. 

However, in this case the secular determinant has an 

infinite number of row* and columns; the first 

ten-by-ten portion is shown here: 

o 

a b i v.       a. € •f t 0 • 
A* t 

a -v 2 

b Z -w H* • • • • * 

c 1 -ur   W • • • • 

4 1    -v 
* 

• 9 • 

€ •   z ~t«r 5- 
• • 

f 9 z —ur $* 9 • 

V •                           • 0 i -t*r ¥' • 

a •                             t • • 1 ~ur- 1 
* 

JL, •                            • 9 • • z -ur 1 

f •                            • • • • • 2 -w 

(it) 
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ORTHOGONALITY AND NORMALIZATION 

It was mentioned, in connection with Equation (67), 

that th© functions dt t   d/.t   ... , given in (64), are 

orthogonal in a certain fashion. The hermitian scalar 

product of two <r"-spin functions can be formed in the 

usual way, by multiplying corresponding components 

together, after first taking the complex conjugate of 

the components of the first function. For example, the 

hermitian scalar product of (27) and (53) is: 

+ z. L +• z,*z 

-   ft-r fcj) 

The complete list of scalar products among the four 

(f-spln functions is given in (70): 
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i 
:- • c 1 

('(l)., '(ll)    -   1 (70,- 70:) 

(Y?li'(?l) - r' 
['CAM) - *' 

('(&,'&*'*&) =  ° 
A limited scalar product of two functions will be    i 

defined, a hermltian scalar product in which there is 

summation over spin components, as in (69)» and averaging 

or Integration over the direction of the vector r. In 

practice, the direction of r enters into (70) or the 

scalar factors in (64) only through the combination k»r. 
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An angle ft,  between the two vectors k and r, can be 

defined: 

X-r =• kr &xi£ (71*) 

Averaging over the direction of r is, in practice, 

equivalent to averaging over the angle tf  , with the 

appropriate weighting factor K sint)  . Examples: 

*»-*» 

\: C7Z) 

= #•*•.*• rty" (73) 
In the sense of this limited scalar product, all the 

functions in (64) are orthogonal. 



r— 

( ) 

o 
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It is also possible to introduce a relative or 

limited normalization, by defining new functions, y^ , 

related to the old functions, Jv>, by normalization 

factors Nv: 

Nk -   i -     i 

J/X 
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It will be noted that the normalization factors follow 

a definite pattern of modulus four.  The functions (64) 

also follow a similar pattern, with the four <T-spin 

functions reappearing cyclically.  The first, fifth, ninth, 

and thirteenth functions have the angular dependence upon 

cosy of the Legendre polynomials Po, Pa, P-A, and Pe , 

respectively, and the corresponding normalization factors 

in (75) contain numerical:factors which are just those 

needed to normalize the Legendre polynomials.  The 

polynomials in the other functions of (64) can be considered 

to be generalizations of the''legendre polynomials. 

An attempt to replace.the relative normalization in 

(72-75) by an absolute normalization would encounter a 

special difficulty. The asymptotic behavior of the 

spherical bessel functions is: 
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Thus a. radial Integration of (74b) would diverge: 

><s© 

/r»•*•(&,*£)~»  £•/£ cO (7X) 

In Appendix D it is shown that even the inclusion of a 

very small mass in the primitive wave equation will not 

produce convergence of integrations like (77). 

The asymptotic behavior in (76), in fact the general 

form of the functions (64), can serve as evidence that 

the primitive waves used in building the structure are 

free waves In space, that the structure is thus a sort 

of standing-wave systenu 

The wave function \lir)  can be represented as an 

expansion in terms of the new, normalized functions: 

YC0 - .1 
7* *'• H C^) 

The new coefficients, a1, b', ... , are related to the old: 

a! - 

h' - k.Nk 

c •  A/< 

-i 

-i 

-i 

I 
*U 



{ ) 

47. 

In place of (63) a new secular determinant la obtained, 

with matrix elements symmetrical about the diagonal: 

( ) 

s!    V c>    J'    e'    f"   $   I'   J.'   f! 

a! -V    Z 

y 1     -V Hrf  
c' • ki?f-*mf  
A' •           • 

*&-**&  

e' •           • •W-rffl-      *      •       • 
f •           • •       -^^.      •      • 

i 
» -   •   • Kt-<* *(&•  • 

c •           « • • • • >$r-» w- 
A* •           •  #*-W 
i •           •  w- 

fa?) 
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0 

i 

SOLUTION OF INFINITE EQUATION SYSTEM 

In the case of a finite equation system, the solution 

of the secular equation ordinarily limits the frequency, w, 

to a certain number of discrote eigenvalues.  In the case 

of the infinite equation system it appears at first inspection 

that the equations for the coefficients aj bj ... , can 

be solved for any value of w. If the first coefficient 

is put equal to unity, then the list can be written down: 

L> far 

(*li  - <&{j) 
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It is clear that Equations (81) would be greatly simplified 

if the frequency, w, were made to satisfy the equation: 

fe*-) 
&r* = k* +• * 

However, stronger arguments are needed before (82) can 

be considered a true limitation on w. 

As an alternative approach to the eigenvalue problem, 

the infinite determinant can be considered to be the 

limit of a sequence of finite determinants, the n-th 

determinant being formed from the first n rows and n columns 

of the infinite determinant.  (Either (68) or (80) can be 

used.) There will then be a sequence of secular equations, 

each equation giving a functional relationship between 

w and k. The first equations in the sequence are: 

O = Q « - IAT (V3* - 23^) 

0-2>,= 
-ur X 
x -ur 

* ur*-^ 

o*V* - iV/i 

ur 

-*•/*•-}?-*) 

, 
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O *?i   " 

231 
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A* 

( ) 
Figure 1.  Solutions of secular equations (63). 

---) 



52. 

(h 

The solutions of the sequence of secular equations, 

as plotted in Figure 1, can be seen to group themselves 

Into Beveral sequences of curves. Each sequence of curves 

appears to he approaching one or the other of the 

following straight lines: 

ur% = A1 + + fa**) 

<"    — O (Mi) 

Each time the size of the secular determinant Is Increased 

by four more rows and columns * new sequences of curves are 

started and are added to the other sequences already formed. 

But each new sequence sets out In much the same way as its 

predecessors, In the direction of (84a) or (34b). 

In a geometric sense, (84a) and (84b) are the limiting 

solutions of the sequence of secular equations, and will 

therefore be considered to be the solutions of the infinite 

secular equation.  However, It v;ould be desirable to havo 

an analytic proof that (84a) and (84b) are the limiting 

solutions of the sequence (83), and in the next section 

an analytic proof by induction is given. 
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INDUCTIVE GENERALIZATION 

The close connection between some of the functions (64) 

and the Legendre polynomials has already been pointed out* 

The even-numbered Legendre polynomials are defined* as: 

-P  / \ _    (Mil ( ~M (ZN)(ZN-l)      -2W-2 
fan (zi - 2»~.f(^N)|J2 \ z z • (H-H-0 

, (2N)-(ZN-l)-(Zti-Z)-(2H-3)      HH-H- \ 
2 + •  (q-N-t) (W-3) +*"/ 

f^   ' tN-rl • {M-r)\   (2N-2r)!     (*5/ 

The first, fifth, ninth, etc., functions may be written: 

Similarly generalized expressions can be obtained for- 

the other functions: 
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W> 
+r *r • cj^) • ^ ^ jrj} m 

+• (ZNii)?!^ (»*>[) 

"i^^-ik+to M) 
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A generalized section of the matrix (80) can be 

obtained by substituting (86-89) Into (63) and (66): 

W     4N+I    W+Z   w+3   w+it 

0ttt 

-ux 

v   / 

• U/ 

LJUMf 
\Wr3) 

fr. 

•Uf 

M 

The operator equations en whioh (90)  Is based are these: 

*'' 

"[pi'**!     *****   TZ'fijfr+Zri • ^JfN+ST 

(it) 
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If the successive secular equations in the sequence 

(83) aro obtained through the usual method for evaluating 

determinants , then a number of recurrence relations are 

easily derived: 

Ths relations (92) oan be combined and manipulated to 

give other recurrence relations such as (93): 

*"** L l •   ' (till-*) • QiW+ 1)  J 

da) 

ihN+f 

(Mr/) (*AJ+3) * (*N i-s)       *N (1*) 

In the sequenoe (83) of secular equations, the fourth, 

eighth, and twelfth take a particularly simple form: 

( 1 
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'•A/ 

where: 

J>M    "   t**f ' »* («*) (W«j 

<X*    S 
a,*. («/•*-£*-*) 

— iii»a **! 
dfr; 

and BN(o<
8) is a polynomial of degree N, In *a. 

Substitution of (94a) and (95) into (93) givee a 

recurrence relation among the polynomials Bj,: 

The first few polynomials BN are: 

p, fa*) -«* - * 

s.fa*)~  «» - f«* + s? y      (17) 

Apart from normalization factors, the polynomials B*, 

are Legendre polynomials: 
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( ') 

While a completely rigorous discussion will not be 

attempted here, it should be clear from Figure 1 that 

the solutions of the secular equations can be classified 

into separate sequences of curves, each sequence apparently 

approaching; a limiting curve.  For example, in the upper 

part of Figure 1 there is a sequence of curves labeled 

b,c,d,e,f,g,h,(i).J,(k),X. A limit for this sequence 

might be defined by: 

,<*) t'rx\ „j «• 4 -a> M.   ... \ n> -   2,3,*, ... 

3> '"•' ->• Q (r 
(11-) 

There is also a similar sequence, in the upper part of 

Figure 1. labeled f,g,h,i,J,k,X* with a limit: 

.CO. or' 

3? M 
•v » e,7, S, ... 

(<Wi) 

The beginning of a third such sequence, g^(k8), is 

shown by the curves labeled i,kt£.    In the general case, 

the limiting curve will be defined by: 
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T-- g/r*>i y»   #A/+2, W-3, <^*-*, 

a-rv) 
(H-H+Z), £T%*) - &T'm\ -o    (v—) 

(fo) 

o 

In the lower part of Figure 1, the curves do not fall 

into sequences like (99), with v taking successive 

integral values.  Instead the curves group themselves 

into even and odd sequences. For example, there is the 

even sequence labeled by b,d,f,h,J,X: 

M or*^ JH^(lc) •y»zt»,c, (lOO*) 

There is also the odd sequence, e,g,l,k: 

«r*- 4?(tf        v-v,*,~ (look) 

In addition, each odd secular equation includes the 

root w = 0: 

(100 c) 

( I 
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Among the upper curves of Figure 1 (the sequences 

in (99)), those curves which are solutions of the equations 

D^3   = (7 (fW) 

lie bracketed between curves which are solutions of (94a). 

(An analytic proof of this geometrical statement will not 

be attempted here, but could doubtless be found from 

Equations (92-98).) Thus to show that the upper curves 

approach the limiting curve (84a) it is enough to show 

that corresponding roots of successive polynomials BN 

approach the limit o<8 = 0 as N approaches infinity. 

The identification of "corresponding" roots of (94a) can 

be made with the help of the roots of (94b,c,d). Figure 1, 

with Equation (95), chows that those roots of 3N(oc
8) for 

which o<a  has its numerically smallest value are the roota 

whloh give the curves in the sequence (99a).  Therefore 

the smallest roots of BN are "corresponding" roots. 

Similar\y the ne;ct smallest roots of BN define curves 

which lie in the sequence (99b).  In this way it Is 

determined that the roots of two polynomials EU and B«,_. 

are to be set in correspondence by counting upward from 

the smallest root of each polynomial. 
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Approximate values for the two smallest roots of 

the general polynomial B^  can be calculated from the 

last three terms, the earlier terms being neglected: 

6 

- <*»• N-(a.N+\)    +1     > [lou) 

c<* = 
{pi+3)(ti ̂ {^(i+iferf j        (ion) 

The two approximate roots in (101b) both approach zero 

as N approaches infinity, as was to be shown.  The higher 

roots of (101a) can also be examined.  For large values 

of N, Equation (101a) can be written: 

o = 1 - Z fA/v) + •§ fa'Vf - -fe (*/vf 

+ ^F(NVJ*   -   ••• (102) 

() 
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The approximation in (102) consists in omitting factors 

of the form: 

[l +   0{D] (,03) 
Such factors should multiply each power of (Nac(8) in (102), 

but each of these factors approaches unity as N becomes 

very large. The polynomial equation (102) will have a 

set of numerical roots, values of (N8oc8) which cause the 

(infinite) polynomial to vanish. The smallest of these 

roots is: 

MV «    a€17 (lot) 

As N becomes infinite, (102) becomes an increasingly 

better approximation to (101a), so that: 

where the constant in (105) is a numerical root of (102) 

and does not depend on N. 
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Equations (105) and (95) show that the limit of 

each sequence of curves in the upper part of Figure 1 

is the straight line (84a).  A similar discussion can be 

applied to the even sequences in the lower part of 

Figure 1, because the curves satisfying (94c) are 

bracketed between the solutions of (94a) and can be used 

to determine which are "corresponding" solutions of (94a). 

The same rule is found for the lower curves as was found 

for the upper curves: the roots of BN(<X
8) are to be counted 

upward from the smallest value of o<*. The analysis in 

Equations (101-105) can be used again, and (95) shows that 

(105), as applied to the lower part of Figure 1, is 

equivalent to (84b).  That is, the even sequences like 

(100a) approach the limiting straight line w = 0.  Yet a 

true solution of the infinite secular determinant should 

be characterized by the condition 

ury(k*) - **„(*) I -* 0 (*->"> ; ur(*i-~«*.(kj)    (\05J 

so that both odd and even equations must be included. 

Fortunately, the limiting solution of the even sequences 

is already a solution of each odd equation, as shown in 

(100c), so that (84b), like (84a), is a solution 

satisfying the requirement (105'). 

The eigenfundilons are found from (84) and (8l): 
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(wa = /€ + *): 

( ) 

a 

to 

/     

C*   - 

J 

f- 
* 

*' 

/   

tf 

^ 

•W   = 

AC 

ur 

2-   [firJ 

*- la*-*; 

i. 

V* 

v% 

4- 

3* 

31 

f 
^ \'/* 

— n   ' \    -a     .. «.       ^ ^ 'I *   \.2%'lf> £* j 

(\0G* - I06«i) 

• 
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u 
f. 
K 
ur  «« o) : 

a'   = 1 

b'   - 

c'   - -H*J* 
</'  = o 
d = (^- 

/' - 0 
i 

0 
2.  (_3>7\*- 

4! = 0 

x. 

^ 

ir 

^L' 
/   __ O 

13 V/» 

(/07 a. -   /^7^c) 
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The coefficients in (106) and (107) can also be 

written in generalized notation: 

(w*» k*+ 1-): 

^1 -ffe^ffi 
Vx 

/ 

\ 

(ur =p) : 
//* 

<?A/J' 

(Mi-?)' 
_ /f> 3°• i-» - • ftM*. (M'+/> frj^ V/a   }     (^ V 

o J 
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In (108) and (109), on the left-hand aides, the coefficients 

a*, b', ... , have been translated to the numerical notation 

(1)', (2)', ... , which can mere readily be written in 

generalized form. As N is allowed to approach infinity, 
c 

the coefficients approach the following limiting values : 

(llN-hi)1 
— H4t 

(D-N + tf -> >*>&r 
(W+3J _* 

*>•(& 

(*N+tf [arl 

(» -*) : (N ~> eo) 

(tHVt-i)' *<±r 
(HH*o)' S5BS o 

(M+3)' f 
^jLh If* 

k \irJ 

OhN + *)' 

(\\o) 

f\w\ 

=  c n 
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SOLUTION IN CLOSED FORM 

The solutions (84) of the infinite secular determinant 

were obtained from the requirement that the sequence of 

secular equations, formed from finite determinants of 

increasing size, should converge to a limiting equation. 

The convergence was expressed geometi-ioaliy in Figure 1 

and analytically in Equations (95) and (105). When the 

limiting solutions (84a) and (84b) are substituted into 

the expressions for the coefficients, the resulting values 

(106-111) are bounded and form converging sequences. 

The coefficients and functions can be combined, as 

in (78), to form the elgenfunction i^'(r) belonging to 

either of the two eigenvalues (84a) and (84b). If the 

spherical bessal functions Jn(Kr) are expanded in power 

series, then a regrouping of terms allows the complete 

elgenfunction to be expressed in closed form, in terms 

of the ordinary bessel functions: 

( ) 
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(V=A2-M): 

f(r] 
i t J„ (xr an v/) • '(i\ 

2      (xr skui)     v' 

(<* 

(1,2) 
J 

kx      (xrsi'n^) 
rJ^L.\iU^ (113) 

The angle vi was defined in (71). The algebraic sign of 

the quantity sini^ is not of significance in (112) and (113), 

since only even powers of siny7 are involved: 

T/; {Krs*H)i) — 
JL'JL 

r2|^.X 

(lit) 

•=   —• f   *-— ••• lllD j 
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It can be seen that the wave functions (11?) and (113) 

have a limited dependence on r, depending only on those 

components of r which are perpendicular to k. That is, 

for the plane wave solution (20) of the general wave 

equation, the Internal-structure function <^(r) is wholly 

transverse in character, at least in this special case 

of zero spin with *&.  = 'Cg = +1. 

The first of the two solutions, (112), is of 

particular interest, since it describes the motion of 

a particle with mass. Through (51), Equation (84a) can 

be writtens 

\C - K' + I**)' (lit) 
Equation (115) is the desired generalization of (32), 

and reduces to (32) when the center of gravity Is at rest. 

Equation (116) is the familiar Einstein relationship between 

energy, momentum, ani mass, translated to the wave terms 

of frequency, propagation wavenumber, and rest frequency, 

all expressed in wavenumber units. 

The second solution, (113), is a static solution, as 

shown by its corresponding secular equation (84b). This 

zero-frequency solution does not show particle behavior. 

( ) 
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As written in (113), the second solution does not remain 

finite as k is allowed to approach zero.  However, the 

wave function (113) can easily be renormallzed to keep it 

finite, simply by multiplying it by k or k8. 

Discussion of the physical significance of the zero- 

frequency solution (113) will be deferred. -,  but the particle 

behavior of (112) gives riBe to the question of its 

identification among the known elementary particles. 

The fact that (112) is a zero-spin structure of pseudoscalar 

character' (an inversion of coordinates will interchange 

the two waves of the double-wave system, reversing the 

sign of the internal-structure wave function) suggests that 

(112) might represent a pi-meson.  It might be supposed 

that the charge of the particle could be related to the 

f-dependence of the structure, perhaps with charged 

structures having ti = t^   , while neutral structures had 

^. = - 'V9  . However, such a speculation would be confronted 

by the results of Appendix C, in which it is shown that 

exactly the same roots, (84a) and (84b), are obtained, no 

matter which ^-dependence is used.  Thus (112) cannot be 

identified as a pi-meson, beoause there would then be no 

way of accounting for the observed mass difference between 

the charged pi-meson and the neutral pi-meBon. 

( ) 
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Nevertheless, from the study of other structures, 

to be discussed In separate chapters, there Is reason 

to believe that the etructure (112) is closely related 

to the pi-meson, the charged pi-meson probably being a 

four-wave structure which combines the two-wave structure 

(112) with a different two-wave structure (the photon), 

to be described in another chapter.  If it is tentatively 

assumed that.1 (112) is a olose cousin of the pi-meson, 

and ha» approximately the same mass, then a numerical 

value can be given to the rest-wavenumber 2X, which 

represents the particle mass. The wavelength, which 

would then correspond to the radian wavenumber ~y< t  is: 

xs • \o"*\A«. (m) K 

It is interesting to note that, if the magnitude of k 

is allowed to approach zero, then (112) remains dependent 

upon the direction of k. If,-at .the same: time. i( 112):, is 

averaged over the direction of k, then (112) reduces to 

the solution whioh was previously obtained, in (37)» for 

the special case in which the center of gravity was at rest, 

The construction of a wave packet from the plane wave 

solutions will be discussed in Appendix A. 

i    \ 
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METHOD OF UNDETERMINED MULTIPLIERS 

The secular equations (84a) and (84b) were obtained 

from the Infinite secular determinant (80).  Both a 

geometric and an analytic method were used, but neither 

of these two methods appears suitable for generalization 

to the much more complicated secular determinants which 

will appear later in the theoretical development, when 

spin-one structures and three- and four-wave systems are 

analyzed. An alternative procedure of greater simplicity, 

to be called the method of undetermined multipliers, will 

be.'described here and will be used in later analyses. 

It can be seen from (103) and (109) that the 

coefficients in the expansion of an elgenfuhction fall into 

four Bets. Within any one of the four sets, the ratio of 

any two of the coefficients is a pure nuraber, with no 

dependence on k or w. And a comparison of (108) with (109) 

shows that the ratio is the same for both eigenfunctions, 

although this will not always happen with other structures. 

In each structure that is analyzed it will be found 

that the functions and the coefficients can be grouped 

naturally into c» finite number of such sets. In the present 

case the number of sets is four, but for other structures 
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the number of sets may differ.  In general the number of 

sets Is equal to the number of Independent flr-apin functions. 

Wit 1 the method of undetermined multipliers the 

infinite secular determinant is reduced to a finite secular 

determinant of dimension equal to the number of seta of 

functions or coefficients.  In the present case the reduction 

is to a four-by-four determinant.  Only one coefficient 

from each set is used, the higher coefficients beln« replaced 

by numerical multiples of the first coefficient in the 

appropriate set, wherever it is necessary to use equations 

involving the higher coefficients. The undetermined 

multipliers are then fixed by requiring that the secular 

equation take one of the following two forms: 

»r' « O (\\%k) 

In the present case, the; fifth coefficient will he 

written as a multiple of the first coefficients 

e' = £-a' (111) 
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With the replacement (119), the first four simultaneous 

equations can be written with only four coefficients 

explicitly involved: 

•*• • a!  +   x b' o 

X- a'   - ur-k'  + k-fef-c' -°\  r 

There will be a solution for a', b', c'» d', in (120), 

only if the secular determinant vanishes: 

There are solutions of the forms (118), provided that: 

£ = i-M '/% 

• i 

0**) 
Comparison of (119) and (122) with (106-109) shows that 

the results obtained by this method of undetermined 

multipliers are the same as the results obtained by the 

Seometric and analytic methods described previously. 

v ; 
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Once the ratio E has been determined, as in (1^2), the 

secular equation (121) becomes 

which factors directly into (84a) and (84b).  The individual 

coefficients can be found from Equations (120) and the 

later equations in the simultaneous system described by 

the matrix (80).  Since the equations are homogeneous in 

the coefficients, one coefficient can be set arbitrarily. 
i 

If the first coefficient, a', is chosen to be unity, then 
i 

i the whole list of coefficients will be identical with the 
l 

list obtained previously. 

The method of undetermined multipliers can be 

generalised.  Instead of the minimum number of equations, 

as in (120), any greater number can be used, with the 

higher coefficients (beyond the number of equations) being 

replaced by multiples of lower coefficients in the same set. 

The secular determinant is then more complicated, b\«t the 

requirement that the secular equation be of the form (118a) 

or (118b) leads once again to the same solutions. For 

example, five equations could be used, with the sixth 

coefficient replaced by a multiple of the second: 

i  ( ) 
i 



( ) 

74. 

f' s   p. b' (i z+) 

O 

(its) 

With the choice (126), which agrees with (106-109), there 

is in this case, besides the two desired solutions (118), 

an additional root: 

This root is not of the forms (118) and doe? not recur 

as the number of equations Is increased.  It is therefore 

considered a spurious root not characteristic of the 

infinite equation system. 

Six equations could have been used instead of five 

or four: 

<   ) 
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Once again, in addition to the desired roots (84), there 

is an additional, spurious root: 

(  \ If eight (or more) equations are used, there is then a 

choice in the way the higher coefficients are to be 

expressed, but the resulting solutions are the same, no 

matter which alternative is chosen. For 6xamplo, the 

ninth coefficient may be expressed as a multiple of the 

first, or as a multiple of the fifth: 

M   *    la' ((31a) 

*' ~   I'-e' f/32i) 

Thf»se alternatives lead respectively to the secular 

equations: 
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( ) In either case, the same solutions as before are obtained 

in the same way as before: 

I * "g- ft 3**) 

It would, of course, be possible to generalize this 

procadure with the help of the general matrix elements 

in (90), but the essential simplicity of the method would 

thereby be lost. The practicality of the method of 

undetermined multipliers lies in the clarity and directness 

of its simplest form, as Illustrated in (118-123). 
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THE FERMI SEA 

It Is clear from the form of the functions in (64), 

(112), and (113), that the double-wave structure is not 

a deuteron-like combination of two sub-particles bound 

together in space, since such a combination would involve 

a negative-exponential dependence upon the relative 

coordinate r, whereas the actual functions show a periodic 

dependence upon r. The structure is actually a standing- 

wave system* a partially localized configuration which 

has a center and an identity, and which, in the case of 

(112), moves as a particle, as shown in (116).  However, 

the structure can be resolved into its elements, these 

elements being primitive waves extended through the 

universe. Each function in (64) is the combination of 

a converging and a diverging sphericp.l wave, while ths 

waves in (112) and (113) are cylindrical. The fact that 

the dependence upon r is periodic rather than exponential 

ia an intrinsic feature of the theory that goes back to 

Equations (31)» to the positive sign accompanying the 

constant terms there, and back further to (20) and the 

assumption of a periodic dependence on the laboratory 

time T, and to (17) and the deliberate omission of any 

explicit coupling between primitive waves. 

•' ) 
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It should also b6 noted that all the functions 

used in the double-wave structure have the same periodicity 

in space, a periodicity characterized by the wavenumber K. 

The possible physical significance of this quantity VC , 

which serves as the unit cf mass, is the main subject of 

the present section. 

If a, structure such as (118)s satisfying the 

Einstein relationship (116), is to represent a particular 

kind of particle, with a particular mass 2K,  then 

several such structures, reprcccnting several particles 

of the same kind, ought all to have the same value of 

rest mass or rest frequency. The wavenumber K, the unit 

of rest mass, ought therefore to have the same value for 

all o* the separate structures.  In addition there are 

many other kinds of possib'a structures! a double-wave 

structure of spin one.and a triple-wave structure of 

spin one-half will be described in separate chapters. 

In each case the rest mae3 will appear as a multiple of 

a wavenumber K» and it is important that the K have 

the 3ame value and significance in each case, so that 

numerical mass ratios can be calculated and compared 

with experiment. 

i ) 
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It has already been pointed out, in the discussion 

of Equation (116), that the structure (112) is actually 

not a satisfactory model for any of the known elementary 

particles, but other structures will he found to be 

satisfactory models for certain of the elementary 

particles, and in thase cases the arguments just given 

acquire a special validity.  From these arguments the 

wavenumber K emerges as a basic constant, the reciprocal 

cf a, fundamental length, though as yet without a physical 

meaning.  It is possible, still without asking about 

physical meaning, to suggest a simple rule for building 

functions in the more complicated cases.  If Equation (16) 

is used to express the relative vector, r, in terms of 

the individual vectors, 7a. and r«, then it is found that, 

at least for small values of k, the structural functions 

are built from a pair of primitive waves, each having the 

same propagation wavenumber K.  In the generalization to 

a triple-wave structure, the form of the wave equation 

indicates that the scalar dependence upon the relative 

vectors, r = ^(2ri - rs - r8) and p  - (r* - r8), should 

be a product of spherical bessel functions.  Within this 

limitation, the wavenumber K can be introduced in such a 

way that, In particularly symmetrical orientations of the 

three waves„ the waves each have the same wavenumber K• 
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In the triple-wave case the functions mist be 

antisymmetrized, and permuted coordinates are useful: 

?'- if 2?, - % - rj)     ?'•* (r3 ~ Tj)    ^ A35j 

The appropriate products of spherical bessel functions 

can be abbreviated: 

Two independent solutions of the triple-wave equation 

oan be generated from the following two functions, in 

which the above abbreviations and the conventional spin 

notation are used.  (These functions are Included here 

to illustrate the multiple-wave generalization? of the 

double-wave functions.  Detailed discussion of the 

triple-wave and quadruple-wave solutions will be 

reserved for later chapters.) 

I o 
: 

1 
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While it is not strictly necessary, in building 

structures, to attribute a physical meaning to the 

fundamental wavenumber K , such a physical meaning is 

nevertheless desirable and can actually be constructed 

(' ') 
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through general arguments*which are similar to those 

in the first two sections of this chapter, though pernaps 

less compelling. These arguments will be given in.more 

detail in.a separate chapter, but will be included here 

in the following abbreviated form: 

Since all elementary particles are observed to 

combine in themselves a wave aapeet and a particle 

aspect, it can be inferred that these are two concepts 

which are needed in the building of all particles and 

are therefore concepts which belong on the next conceptual 

level below the level of the elementary particles.  Thus 

the primitive field itself should have both a wave aspect 

and a particle aspect, since the primitive field must 

include whatever is found on its conceptual level in order 

to ensure its singleness. Furthermore, since all the 

elementary particles (so far as is known) respond to 

gravitation, and in exactly the same way, the primitive 

field itself should ~ae  directly related to gravitation, 

and ought to respond to gravitation itself.  In its 

particle aspect it should show particle response, in its 

wave aspect wave response, but these two responses should 

not be separate phenomena but different aspects of the 

same phenomenon. 
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The response of particles to gravitation can be 

visualized, for example, by considering the behavior of 

the molecules of the earth's atmosphere. These particles 

exhibit a density gradient? nearer t) e source of gravitation 

the particles congregate in greater umbers. The wave 

response can similarly be visualized. A wave responding 

to the same gravitational attraction would be bent toward 

the source, with the result that the successive wavefronte 

in the wave traxn would be crowded together on the lower 

side and spread apart on the upper side of the wave train. 

There would thus be a wavenumber gradient paralleling 

the particle density gradient. These two gradients can 

represent the same phenomenon from two points of view 

provided that the primitive field is of such a nature 

that a wavenumber gradient always accompanies a parallel 

density gradient in gravitational situations. It has 

already been pointed out that the primitive field should 

have Fermi-Dlrac statistics, but the gravitational argument 

reinforces this conclusion, since a Fermi-Dlrac field is 

| needed to produce such a correlation between wavenumber 

I and density: if a certain number of Fermi-Dlrac waves or 

>j particles are enclosed in a box of a given size, then the 

O 
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ground state is a state in which ail possible levels of 

the field are occupied up to a certain wavenumberj and 

the greater the numerical density, the higher the wave- 

nvimber marking the top of the "Fermi sea". 

It is not essential that the system be in  its lowest 
i 

state, but it is necessary that the system be reasonably 

close to equilibrium at a low "Fermi temperature", so that 

the wavenumber value marking the approximate surface of 

the Fermi sea can actually be defined.  If the system 

were in a highly excited, non-equilibrium state, the 

desired correlation between wavenumber and numerical 

density could not be established. When the system is near 

equilibrium **t a low Fermi temperature, then disturbances 

or deviations from equilibrium will tend to be localized, 

in wavenumber space, to the regions near the Fermi surface. 

In particular, elementary particles, viewed as excitations 

of the primitive field, will tend to be built from 

primitive waves near the Fermi surface, from primitive 

waves all having the same wavenumber K» where H is the 

height of the Fermi sea.  Thus the foregoing argument 

leads to the same rule for building elementary particles 

that was described earlier, while giving an added physical 

meaning to the fundamental wavenumber X» 
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However, K emerges from this argument not aa a 

universal constant but as a parameter which varies through 

space, "being greater in those regions where the gravitational 

potential is higher.  Since vc S3rves to set the scale of 

mass for the elementary particles, and vcc sets the scale 

of frequency, both masses and frequencies will also vary 

through space, though only gradually.  In regions where 

there is a gradient of vc, a standing-wave structure of 

the sort which has been analysed in this chapter can still 

be matched to such a sloping boundary condition, but the 

structure thereby acquires an acceleration of gravitational 

character. Furthermore, the primitive waves used in the 

structure will themselves be refracted in passing through 

such a region of changing vt. and the incorporation of 

refracted waves into an accelerated structure leads to 

gravitational effects which Include the three crucial 

phenomena described by Einstein. The details of t^e 

gravitational cevlculatlons are given in a separate 

chapter.. 

It will be found helpful, in the discussion (in a 

separate chapter).of the origin or source of the 

gravitational gradients, to assume a non-vanishing 

C) 
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spacing of the levels In the Fermi aea.  This is 

equivalent to the localization of a primitive wave 

within a dimension of cosmic size, of the order of two 

"billion light-years.  It is intended to effect this 

localization through the inclusion in the primitive 

wave equation of a very small mass-like term (probably 

imaginary}f so small that the velocities of such structures 

as the photon and neutrino would not be appreciably 

changed from c, although there might be small but 

significant modifications of equations, which might, for 

example, affect thG explanation of the galactic red-shift. 

In Appendix D there is an analysis of those modifications 

of the double-wav«, spin-zero structure which would 

accompany the Incorporation of a very small mass-like 

term in the primitive wave equation. 

(   I 
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SUMMARY 

In order to terminate the historical sequence which 

has led through atoms and nuclei to the elementary 

particles, it is postulated that there exists a single 

primitive wave field, g , whose properties are to he 

inferred from its singleness.  The spin should he half- 

integral and is chosen to be cne-half. The velocity 

should be no less than the velocity of a photon, and 

the mass is chosen to be either zero or* 30 small that 

it would correspond to a Compton wavelength of cosmic 

dimensions 

On the assumption that the mass is rigorously zero. 

a wave equation (1) is written down and a double-wave 

equation (17) is constructed. Two solutions with zero 

spin ax-e; found (112,113) and related solutions are 

givan in Appendix C. The construction of a wave packet 
1 

j is described in Appendix A. An auxiliary equation (18) 
I 

giving the dependence on the relative time variable 

is solved In Appendix B.  In Appendix D are described 

the modifications which follow the inclusion of a very 

small mass In the primitive wave equation. 

I 
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In this theory operators are represented by Infinite 

matrices, and one such matrix (80) is studied in 

considerable detail, in order to Justify a simple 

method (the method of undetermined multipliers) which 

will be used in later chapters in the. reduction of•other 

infinite matrices to finite form. 

The solutions of the double-wave equation are 

starding-wave systems, combinations of converging and 

diverging primitive waves. The physical Interpretation 

of the solutions, based partly on gravitational arguments, 

is that the univoree Is occupied by primitive waves 

which form a Fer-mi sea, filling momentum space (or 

wavenumber space) up to a certain level which is measured 

by the wavenumber VC. Elementary particles are standing- 

Wave structures formed from primitive waves near the 

surface of the Fermi sea. 

If the spin zero structure (112), which moves like a 

particle with mass 2Vt (in wavenumber units), is 

tentatively Identified as a near cousin to a pi-meson, 

then the wavelength of the primitive waves at the surface 

of the Fermi sea is 2TT/X, = 2.8 • 10"3-8 cm.   In addition 

to the particle solution (112) there is a static solution 

given in Equation (113). 

i 

(   ) 
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Like all theories, thlB theory can only build upon 

the Ideas of others.  Of particular Importance In the 

formulation of this theory have been certain Ideas of 

Larmor, Bohr, ds Broglie, Dlrac, and especially Einstein. 

The omission of an extensive bibliography should be taken 

as evidence that the multitude of sources was too great 

to be reduced to a Hat. 
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